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Game-theoretic Analysis of Competition
between Access Service Providers utilizing a

Nash Genetic Algorithm

Abstract
Fiber-to-the-home (FTTH) technology is a promising solution for pro-
viding advanced service delivery to end-users, but its implementation
requires substantial capital expenditures. To minimize investment risks
and aid decision-making for access service providers, we propose a game
theoretic framework based on a modified Nash genetic algorithm. We
illustrate how this framework can be applied to analyze the competition
between access providers offering a flat-rate FTTH service on multiple
geographical areas. Each provider determines its price for all areas simul-
taneously and decides whether to invest on a particular area depending
on the anticipated revenues. Two distinct demand models are adopted to
describe different types of consumer behavior. A solution engine, based
on a modified mixed-variable Nash genetic algorithm is implemented
under an open-source license. The significance and practical implica-
tions of the equilibrium points obtained for both single and multiple area
games are discussed. The proposed framework and the solution engine
developed, aid both providers and regulatory bodies to analyze competi-
tive environments. They can also be used to implement decision support
tools for similar problems as well. The paper concludes by pointing out
further research directions in this context.

Keywords: Game theory, Nash genetic algorithm, access providers,
communications, competition, broadband services

1 Introduction
The communications industry plays a fundamental role in the global economy
and has been driving the development of the internet and the world wide web
for decades. The market for communication services is continuously growing
and was valued at 1.7 trillion USD in 2019 with at an annual growth rate of 5%
until 2027 [1]. The COVID-19 pandemic accelerated the adoption of e-learning
and teleworking, highlighting the need for upgrades in information and com-
munication (ICT) infrastructures [2]. The advent of 5G [3] ushered in new
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business opportunities in domains such as massive machine-type, enhanced
mobile broadband and ultra-reliable low latency communications [4]. Access
networks providing connectivity to user premises are crucial to meeting the
performance requirements of 5G.

Various actors are involved in the development of the communications
industry, including users, device manufacturers, network, content, service,
cloud providers and regulatory bodies [5]. Given the high stakes, investment
decisions need to be based on rigorous frameworks. The motivation behind this
work, lies in the establishment of a strategic analysis tool for access provider
competition operating at a national or regional scale. We focus on Fiber-to-
the-Home (FTTH) which is considered the next generation evolution of access
networks. Due to their inherent low propagation loss, optical cables provide
unprecedented bandwidth × distance products [6], ensuring reliable gigabit-
per-second access rates at large distances, unlike wireless technologies where
issues such as line-of-sight, terrain, etc may undermine service delivery. FTTH
is nevertheless associated with high deployment costs involving roadworks,
cable installation, termination, testing and investments in active equipment.
This renders its deployment an economic rather than technical issue, deter-
mined by factors such as customer density, average income per capita, existing
copper infrastructure, subsidization policies etc. Providers tend to deploy their
FTTH network, starting from densely populated areas and gradually expand-
ing to sparsely populated ones, taking competition into account. On the other
hand, regulatory bodies need to analyze such strategies to regulate the mar-
ket, taking the user’s best interest at heart [7]. In our work, we address this
problem in the context of game theory, which is an established mathematical
framework for analyzing the interaction among rational competing agents [8].

Game theory offers valuable insights in scenarios featuring multiple ratio-
nal decision-makers, each striving to make their own locally optimal decisions.
Nash equilibria serve as solutions that establish stable points where all parties
simultaneously achieve their optimization goals. These equilibria represent sit-
uations in which rational players lack any motivation to alter their decisions.
Given that access providers generally act as rational players seeking to maxi-
mize their revenues in a competitive landscape, game theory emerges as an apt
framework for analysis in these contexts [9]. Finding Nash equilibria presents a
considerable challenge, especially when dealing with complex utility functions
and large decision spaces. Analytical solutions are often only attainable under
simplified assumptions. In cases involving the intricate interplay of strategic
decision-making, numerical methods become a necessity. One such method is
the application of a Nash genetic algorithm [10]. This approach combines the
fundamental principles of genetic algorithms and game theory. Players are allo-
cated chromosome populations reflecting different potential decisions. During
each iteration of the algorithm, players in turn strive to locally optimize their
utility functions. Over successive iterations, the algorithm steadily converges
towards a solution that corresponds to a Nash equilibrium. This iterative and
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evolutionary process enables the algorithm to navigate a landscape of strategic
interactions and identify equilibrium points efficiently.

Using this framework, the paper addresses a critical issue involving the
competition among multiple FTTH providers vying for market dominance
in various geographic areas. These regions may exhibit diversity in terms of
population, service demand, and deployment costs. Each provider must make
strategic decisions regarding the expansion of services into specific areas and
the adjustment of a uniform service fee, all with the goal of optimizing indi-
vidual profits. The primary objective is to pinpoint Nash equilibrium points
where providers lack any incentive to modify their tariff policies and expan-
sion decisions and market has reached a stable state. Adapting this framework
to the situations at hand, providers can evaluate the best course of action
while regulatory bodies can shape their policy decisions in order to achieve
the desired outcome in terms of broadband service penetration, etc.

The rest of the paper is organized as follows: In Section 2, we present
existing literature in game theory approaches and explain our envisaged con-
tribution compared to it. In Section 3, we further describe the two alternative
demand models. In Section 4, we highlight the details of the genetic algorithm
used in order to calculate the Nash equilibrium. Section 5, provides some
indicative results under different settings interpreted from a strategic point-of-
view. Section 6 summarizes our work and provides some directions for future
work.

2 Related work an contribution
Game theoretic approaches are frequently used in operations research [11–15]
and have been applied in various aspects of ICT, not necessarily focusing
on competition. A detailed literature review [9, 16, 17] is outside the scope
of this paper and we only mention some pertinent works. In [18], a slotted
resource allocation game with several providers is analyzed. Unlike our case,
this work considers wireless service providers having fixed capacity during
each time slot and user demand can be split among providers. In [19], both
the effect of pricing and quality-of-service (QoS) decisions of service providers
is considered using game theory. The authors assume a single area game,
with a linear demand model and no option is given to the providers not to
expand. In [20], real-options and game theory are applied to evaluate ICT
investments and oligopoly under multi-criteria perspectives. The paper con-
siders two firms that can decide whether to invest and how much to produce
under a utility function inspired by the analytic hierarchy process (AHP). The
framework is applied in the case of a construction company planning of lay-
ing fiber cables along a newly constructed motorway and offering dark-fiber
service to other telecom providers. This situation is quite different than our
scenario considered, where the service providers compete over multiple areas
under various user demand models. In [21] game theory is used to study the
collusion and competition strategies between service providers. The authors
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adopt evolutionary and Hotelling approaches to analyze methods of eliminat-
ing operator collusion at a government level. In [22], a general game-theoretic
treatment of the oligopoly among Slovakian service providers is given. In [23],
the impact of bundling in network provider strategy is analyzed using evo-
lutionary game theory. The study focuses on the problem of the increasing
adoption of over-the-top services and the threat it poses to telecommunication
providers.

Compared to existing literature, we adopt the game-theoretic approach
to describe the area-by-area competition among providers in FTTH deploy-
ment. In our scenario, each provider j can decide whether or not to expand
in a specific area i and can also set the price pj it charges (considered flat in
all regions). In practice, regions may correspond to provinces, municipalities
or communities, each with its own deployment-related costs [24]. In this con-
text, Nash equilibria determine the optimal expansion and pricing strategy in
the sense that no competitor has incentive to deviate from it. A number of
other frameworks have been considered in ICT such as auction mechanisms
especially for cloud resource management and pricing [25] or network band-
width allocation [26, 27]. The present work focuses on provider competition
described by alternative demand models discussed below. We do not focus on
Stackelberg games [9, 28] where one or more providers commit to expanding
and the rest adapt to this action. In FTTH, new cables must be installed at
the customer premises anyway, unlike previous generation copper-based access
technologies where decisions of the incumbent operator could largely deter-
mine the market, due to its existing infrastructure. Given the demographics of
each area i and the prices {pk} charged by the providers, the number of area
subscribers nij attracted from access provider j is estimated by the demand
model. Examples assume nij being a linear superposition of pk [29], attraction
models [30], finite-state continuous-time Markov chains [31], approaches based
on the standard microeconomic framework, [32], simulation [33] and empiri-
cal approximations based on curve fitting [34]. Except but special cases, the
demand model intricacies may render analytical solution for Nash equilibria
intractable and one must resort to numerical techniques.

2.1 Contribution
In our work, we modify a Nash genetic algorithm (Nash GA) based on the work
of [10] to provide a unified approach for mapping both real and binary decision
variables using a scheme proposed for conventional GAs [35]. Compared to
previous works, our contribution can be summarized as follows:
• We focus on the case of service providers competing over the provision of

FTTH service in a region. We consider both single and multi-area games
where providers have the option to expand or not in certain areas depending
on the anticipated revenues. This scenario has not been previously analyzed
in the literature with this level of detail.
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• We highlight the details of a Nash GA suited for access provider competi-
tion, including initialization, convergence and unified treatment of decision
variables. We also elaborate on the practical implications of the obtained
Nash equilibria. Although Nash genetic algorithms have been used recently
for analyzing general competitive games [36], here we formulate a game
which is particularly suited for the communications sector and the scenario
at hand.

• We consider two types of consumer behavior. The limited interaction case
is based on an attraction model [37] where the relative proportion of sub-
scribers attracted by any two providers deciding to expand depends solely on
the prices they charge. Under this model, the interaction between providers
is therefore limited. We also explore an enhanced interaction model, where
customers make informed decisions based on the cheapest price offered in
their area. It is this price that ultimately determines the market size and
competing providers attracts customers portions depending on the difference
of the prices and the minimum price.

• In addition, we make our Python implementation freely available on the
web [38] under an open-source license. This enables researchers to adapt
our framework to their particular case studies. To our knowledge, no such
open-source implementation currently exists.

Our proposed framework can be extended to incorporate alternative demand
modelling. It is particularly useful when the analytic solution for Nash equi-
libria can not be found (e.g. due to demand-related model complexities). In
all cases assumed here, the algorithm converges well and numerically locates
an equilibrium point even in multiple area games, where the dimension of the
search space increases.

3 Provider interaction modeling
In this section, we consider the main components needed in order to describe
the provider interaction from a game-theoretic standpoint.

3.1 Game-theoretic framework
The action profile sj of each provider j consists of the variables that it can
vary to obtain the optimal profitability. These are:
• the price pj charged for the service, assumed flat for all areas i.
• the variables bij reflecting whether or not he invests on i (bij = 1 and bij = 0

respectively).

We therefore can write:

sj = {pj , b1j , · · · , bNj} (1)

where N is the number of areas considered. Note that pj are continuous vari-
ables while bij are binary. The decisions of provider j are prioritized under a
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utility function, uj , related to the actions of other players as well. The utility
function uj = uj(s) maps the action profile s which comprises of the ensemble
of combined player actions,

s = (s1, · · · , sj , · · · , sM ) (2)

to real numbers. In (2), M is the number of providers. Let s−j be the action
profile obtained without considering the action of player j,

s−j = (s1, · · · , sj−1, sj+1, · · · , sM ) (3)

and (s∗j , s−j) be the action profile obtained from s when the action of player
j is replaced by s∗j ,

(s∗j , s−j) = (s1, · · · , sj−1, s
∗
j , sj+1, · · · , sM ) (4)

Nash’s equilibrium corresponds to an action profile s∗ = (s∗1, · · · , s∗M ) where
no player can improve its utility function by unilaterally changing his action,
i.e.:

uj(s
∗
j , s

∗
−j) ≥ uj(sj , s

∗
−j) (5)

for every player j and every possible action sj of player j. This situation
corresponds to a steady state s∗ that when reached, the players do not have
any reason to choose different actions [8]. We assume that players know each
others’ preferences, and behave rationally in a predictable way, which is typical
for network providers seeking to maximize their profits. The utility function
of each provider is related to its profit as discussed in the next section.

3.2 Utility functions
The utility function reflects the total profit of each provider from all areas in
the game. Fig. 1 shows the main parameters involved. These are:
• the number nij of customers attracted by each provider j in each area i.
• a fixed cost component dij related to deploying the service by provider j

in area i, including investments in the provider’s points-of-presence (PoPs),
etc.

• the average cost cij of connecting each subscriber including roadworks, fiber
cable installation and optical equipment.

• the variables bij which denote whether provider j decides to expand in area
i.

• the total cost Cij incurred if provider j decides to move in area i. As
explained in Figure 1, this is given by:

Cij = cijnij + dij (6)

• the fee pj charged by each provider j in all areas he decided to expand.
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Fig. 1: Illustration of the various parameters involved in the utility function
calculation, the market saturation levels and the provider interaction models.

Both dij and cij may depend on network architecture. In passive optical net-
work (PON) deployments, fiber is shared from the PoP of the provider up to
an optical splitter located in a central point of a neighborhood. Customers
are then connected to the splitter by dedicated fibers. This approach leads
to reduced fiber roll-out and is generally preferred [6]. In any case, the profit
Pij obtained for provider j in area i is Pij = pjnij − Cij if bij = 1 or zero
otherwise. Equivalently:

Pij = (pjnij − Cij)bij (7)

The utility function uj(s) is obtained by summing up profits over all areas i:

uj(s) =

N∑
i=1

Pij =

N∑
i=1

(pjnij − Cij)bij (8)

We relate nij in (8) to s given by (2) through models discussed in the next
subsection. The total number of subscribers attracted by each provider is
simply:

nj =
∑
i

nij (9)
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3.3 Demand modeling
Fig. 1 illustrates two market regimes: the unsaturated regime, where there
are some customers that have not yet acquired the service and the satu-
rated regime where all customers have subscribed to one of the providers. We
also illustrate two different interaction models: the limited interaction model
where there is little interaction between providers and an enhanced interaction
model. The details will be explained in the next subsections.

3.3.1 Limited interaction model
The limited interaction model is based on existing attraction models widely
used in the literature [37] and more specifically multi-nomial logit (MNL)
models [39, 40]. The number of customers attracted varies exponentially with
price,

nij ∝ bije
−αpj (10)

In (10), the constant α captures the ease with customers are attracted to
providers. If j chooses not to expand in region i (bij = 0) then no customers
are attracted.

Fig 1 illustrates the situation when M = 2 providers are competing in
one area i. Each attracts a number of subscribers nij from the total potential
customers Ni. Naturally, the provider with the lowest price attracts more
customers. If the prices are high, there can be many customers that decide not
to adopt, i.e. ni1 +ni2 < Ni, still relying on previous generation copper-based
last mile technologies. In this unsaturated market regime, we have:

nij = bijNie
−αpj = Nieij (11)

where eij is given by:
eij = bije

−αpj (12)
and corresponds to the market share of each provider. Note that the ratio of
customers attracted by any two providers j = q and j = r deciding to invest
(biq = bir = 1), is:

niq

nir
=

eiq
eir

= e−a(pq−pr) (13)

The above equation implies that the ratio of attracted customers between any
two providers depends on their price difference. Using (11), it is easy to show
that if a provider invests (bij = 1), then the normalized rate of change rj of
attracted customers with price, equals:

rj
def
=

1

nij

∂nij

∂pj
= α, assuming that bij = 1 (14)

Equation (14) suggests that the relative rate of change of attracted cus-
tomers with respect to price of an investing provider is equal to α assuming
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unsaturated market. Let Ei be defined as:

Ei =
∑
j

eij (15)

In the unsaturated regime, Ei < 1 and (2α)−1 is the price decrease required
to increase the provider market share by a factor of e1/2 ∼= 1.65 (i.e 65%).

If the prices are lowered, more customers will be attracted and Ei may
eventually become larger or equal to one, Ei ≥ 1. This corresponds to a
case where all potential customers adopt the service and the market becomes
saturated as shown in Fig. 1. The sum of nij must equal Ni, i.e.∑

j

nij = Ni (16)

This implies that:
nij =

eij∑
k eik

Ni =
eij
Ei

Ni (17)

Note that the ratio of customers attracted by any two providers deciding to
invest is again given by (13). To summarize:
• if Ei < 1 we have an unsaturated market where (11) holds and there are

potential subscribers not adopting the service,
• if Ei ≥ 1, we have a saturated market where all customers have adopted the

service and nij is determined by (17).

The number of attracted customers are therefore written using a two-branch
function:

nij =

{
Nieij ,if Ei < 1 (unsaturated)
1
Ei

Nieij ,if Ei ≥ 1 (saturated) (18)

To gain further insight in this demand model, we show the market share,
i.e. the fraction of customers attracted n′

ij = nij/Ni from two providers j =
1, 2 in Figs. 2a and 2b respectively, assuming that α = 1. We also show the
penetration n′

tot = n′
i1 + n′

i2 in Fig. 2c. In the latter figure, we observe the
two market regimes: At high prices, the market is unsaturated and providers
quickly attract more customers by lowering their prices. At some point, the
market becomes saturated as n′

tot plateaus to 1. In this range, the competition
between providers becomes more intense as the entire customer base is now
covered and n′

ij depends on the fees charged by both competitors. We note that
the distributions shown in Figs 2a and 2b exhibit discontinuous derivatives
at the branch points of (18), which combined with the discrete values bij will
complicate analytical equilibrium treatments.

3.3.2 Enhanced interaction model
We now consider an enhanced interaction model where subscribers in an area
i do a good market search to choose the provider they will adopt. The best
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(a) (b)

(c)

Fig. 2: Numerical examples of the attraction model described in Section 3.3.1,
in the case of two competing providers deciding to invest in an area. Subfigures
(a) and (b) show the market share of each provider as a function of the service
fees. Subfigure (c) shows the total service penetration in the area.

option will be the provider j
(i)
min with the lowest price p

(i)
min given by:

p
(i)
min = min

j
{pj | provided that bij = 1} (19)

Assuming an exponential law as in (11), the total number of attracted
subscribers is given by:

n
(i)
tot = Nie

−αp
(i)
min (20)

For this model it is easy to show that α can be interpreted as the relative rate
of change of the total number of attracted subscribers with minimum price,

rtot
def
=

1

n
(i)
tot

∂n
(i)
tot

∂p
(i)
min

= α (21)
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(a) (b)

(c)

Fig. 3: Numerical examples of the attraction model described in Section 3.3.2,
in the case of two competing providers deciding to invest in an area. Subfigures
(a) and (b) show the market share of each provider as a function of the service
fees. Subfigure (c) shows the total service penetration in the area.

We elaborate further by assuming that there is only one provider j(i)min offering
the cheaper rate, i.e. p(i)min < pj for all j 6= j

(i)
min. We expect that some a portion

πij of subscribers will leak away from j
(i)
min to another provider j that decides

to expand in i, depending on the price difference:

∆pij = pj − p
(i)
min (22)

We again assume an exponential relation for the portion size:

πij ∝ bije
−β∆pij (23)

where β is some constant describing customer leakage. A small value of β sug-
gests that subscribers may leak more easily to providers charging fees higher
than p

(i)
min since e−β∆pij is slowly decreasing with increasing pj . A large value

of β implies that e−β∆pij is rapidly decreasing with increasing pj , implying



Springer Nature 2021 LATEX template

12 Game-theoretic Analysis of Competition...

smaller customer leakage. Since the portions must sum up to unity with respect
to j, we can normalize πij as follows:

πij =
bije

−β∆pij∑
k bike

−β∆pik
(24)

The number of subscribers is therefore:

nij = n
(i)
totπij (25)

Note that (24) provides a further insight on the parameter β. Let us assume
that only provider j

(i)
min offers the minimum price p

(i)
min while the rest offer fees

pj far greater, i.e. pj � pmin for j 6= j
(i)
min. In this case πij � 1 and from (24),

we can show that1:

1

πij

∂πij

∂pj
∼= −β ,when j 6= jmin and pj � p

(i)
min (26)

Therefore if one provider offers a much cheaper service, the relative decrease
of the fraction πij of attracted customers by provider j is equal to β.

In case two (or more) providers j = j1, j2, · · · , offer the minimum price,
pij1 = pij2 = · · · p(i)min, then (24) suggests that they will have the same market
share at the area in question i,

nij1 = nij2 = · · · (27)

Fig. 3a and Fig. 3b illustrate the number of subscribers attracted by two
providers assuming α = 1 and β = 2 while Fig 3c shows the service pene-
tration. The latter is consistent with the fact that the minimum of p1 and
p2 determines the subscribers opting to acquire the FTTH service by either
provider. As shown in Figs 3a and 3b, the way in which subscribers are
attracted by each provider changes around the diagonal p1 = p2. As long as
p1 < p2 the market favors provider 1 while provider 2 is penalized by poten-
tial clients since dropping his fee brings less customers than when p2 < p1. We
believe this is a better way to capture the market dynamics when well-informed
clientele is assumed.

1The customer fraction πij is written in terms of fj = Aje
−βpj with Aij = bije

βp
(i)
min , as

follows:
πij =

fj∑
k fk

and if πij � 1:
∂πij

∂pj

=
−βfj∑

k fk
+

βf2
j(∑

k fk
)2 = −β(πij − π

2
ij)

∼= −βπij
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3.3.3 Incorporation of network characteristics
In this work, we assume that demand is predominantly shaped by pricing
considerations, with network attributes such as throughput and latency not
explicitly incorporated into our analysis. In FTTH, stability of service perfor-
mance is inherent once the fiber connection is established at the customer’s
premises. This stability stands in contrast to legacy copper-based access tech-
nologies, where variables like distance from the cabinet significantly influenced
service quality. In any case, if we wish to integrate network-specific attributes
into utility functions, a robust approach involves employing multi-criteria
methodologies such as the AHP [20]. This framework provides a systematic
means of assessing the importance of individual parameters, enabling a more
comprehensive analysis of network characteristics within the broader context
of demand and pricing dynamics. By incorporating AHP, we can assess other
wireless/wire line technologies, acknowledging the interplay between network
attributes and consumer demand.

3.4 Parameter extraction
Before closing this section, we should note that the utility functions in (8),
involve both deployment cost-related parameters (cij and dij) and demand-
related parameters (α and β). The former are roughly estimated by the
provider’s engineers given a detailed map of the area and the house-hold
geographical distribution, resulting in a fiber cable roll-out plan. A detailed
calculation of deployment-related costs (trenching, road restoration, fiber ter-
mination, etc) as in [24], can be used to obtain an estimate of the values of
cij and dij . Estimation of the demand-related parameters is more involved.
One approach is to fit the demand parameters with actual customer data
[41]). The detailed manner in which the demand and cost-related parameters
are extracted is beyond the scope of this paper. That being said, diagrams
of Figs. 2 and 3 provide some intuition on the value range of α and β,
considered in the simulations. Alternatively, we could resort to time-series
forecasting adopted in [34] based on earlier access technology generations,
nonlinear Lotka–Volterra equations [42], multi-generational models [43] or fit-
ting demand parameters with actual data [41]. These alternatives can be
incorporated in our implementation of the Nash GA described in Section 4.

4 Solution Engine
The solution search space contains both the flat prices pj of each provider
which are continuous variable and the decision variables bij which are binary.
This constitutes a mixed-variable problem and in light of the complexity of the
utility functions containing branches as in (18) or minimization in (20), analyt-
ical treatment becomes intractable. We therefore need to resort to numerical
frameworks such as the Nash GA outlined in this section. An overview of
the Nash GA applied in this context is depicted in Figure 4. The details are
discussed below.
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(n)
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Fig. 4: Overview of the Nash GA.

4.1 Overview of the algorithm
In this section, we describe the details of the genetic algorithm used to solve
(5) and find the optimal action profiles s∗ [10]. For each player j, we maintain
a pool of P(n)

j = [s
(n)
jp ] of P possible action plans s

(n)
jp where 1 ≤ p ≤ P . The

pool is updated in each iteration n, according to Figure 4. Let s̄
(n−1)
j be the

best action profile of player j obtained in the previous iteration n − 1 (we
shall discuss how this action plan is chosen later on). At the beginning of each
iteration, n, we take as a starting point the pools obtained in the previous
iteration P

(n−1)
j , i.e. we set s

(n)
jp ← s

(n−1)
jp .

For each player j, we first calculate the utilities ujp for the action plans
in his pool Pj assuming that the other players k (k 6= j) conform to the best
action plan obtained at the previous iteration, s̄(n−1)

k . Following the notation
introduced in (3), this is formally written as:

ujp = uj

(
s̄
(n−1)
−j , s

(n)
jp

)
(28)
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where (s̄
(n−1)
−j , s

(n)
jp ) is the action profile obtain when player j chooses action

s
(n)
jp from its pool while the rest of the players conform to their optimal

action plans obtained from the previous iteration. The next step involves the
cross-over operation where members of the pool Pj are combined to produce
offsprings, i.e. new candidate action plans. In order to maintain population
diversity, we also mutate the offsprings, i.e. we randomly perturb their variable
values. The utility functions for these new action plans are calculated again
using (28). If we obtain a higher utility function than those already found in
the pool, then we replace the weakest pool members by the superior action
plans. This provides the new population pool P(n)

j in which we identify the
action s̄

(n)
j plan with the for player j with the highest utility value. This pro-

cedure is carried out for all players in order to obtain the new populations
pools and the new optimal action plans to feed the next iteration n + 1 of
the algorithm. After a number of iterations, the algorithm will converge to
a Nash equilibrium, [10], [44]. In the following subsections we discuss several
implementation aspects of the algorithm.

4.2 Variables
As shown in (1), the action plans sj consist of continuous variables pj and
binary variables bij , indicating a mixed-variable optimization problem. We
modify the Nash GA proposed in [10] to adopt the mapping of conventional
GAs for mixed problems [35]. Let gkj be real variables bound inside [0, 1] for
1 ≤ k ≤ N + 1 and 1 ≤ j ≤ M . The continuous variables pj are mapped as
follows:

pj = gN+1,j(Pmax − Pmin) + Pmin (29)
where Pmax and Pmin are the assumed upper and lower bounds for the prices
pj , Pmin ≤ pj ≤ Pmax. We can also consider different bounds for each player
if the demand-model parameters are quite different. We can choose Pmin = 0
and set Pmax to a value high enough, that the number of subscribers in the
absence of any competition is very low. For the binary variables bij we use the
mapping,

bij = [gij ] (30)
where 1 ≤ i ≤ N and [x] is the integer closest to x. Equations (29) and (30)
imply that instead of using both real and binary variables, we can simply store
the real parameters g

(p)
kj bound inside [0, 1], where p denotes the index of the

pool member in the population pools and therefore treat all variables in a
unified manner.

4.3 Cross-over and mutation
In each iteration, the strongest 50% of the population members constitute
the mating pool [35]. We choose two parents through tournament selection
and calculate the offspring using uniform crossover, which consists of tossing
an unbiased coin and randomly selecting the value of each offspring variable
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from either the first or the second parent. This produces an offspring with
parameters equal to ḡ

(p)
kj which are a mix of the parameters of the parents.

Mutation is achieved by adding a random perturbation ∆g
(p)
kj to each of the

parameters determined by:

∆g
(p)
kj = m0r

(p)
kj g

(p)
kj (31)

where 0 ≤ m0 ≤ 1 is the mutation factor and r
(p)
kj are randomly chosen inside

[−1, 1] from a uniform distribution. The values of the parameters after the
mutation g̃

(p)
kj , are given by the fractional parts of the perturbed variables,

g̃
(p)
kj = ḡ

(p)
kj +∆g

(p)
kj − bḡ

(p)
kj +∆g

(p)
kj c (32)

where bxc denotes the integer part of x.

4.4 Initialization and termination
The initialization of the initial pools is carried out by randomly choosing
the initial values of g

(p)
kj . These values yield the starting action plans s

(0)
jp

for each player through the transformations discussed in Section 4.2. We can
randomly choose one of these action plans in each pool to be the starting
optimal action plan s̄

(0)
j . The criteria for terminating the algorithm may vary

depending on the requirements. In our implementation, we evaluate the degree
of convergence by measuring the relative variation δuj of the utility functions
ujp for each player pool,

δuj = 1− minp {ujp}
maxp {ujp}

(33)

We assume that convergence is achieved if δuj is smaller than a specified value
δumin for all player pools Pj .

If a complex demand model is adopted, the utility function evaluation is
expected to be the predominant factor in the execution time of the algorithm.
We may therefore choose to terminate the algorithm after the number of total
utility function evaluations exceed a specified number Nevals.

4.5 Implementation
Our Python implementation is publicly available under an open-source license
[38]. It relies on the NumPy module which is a fundamental scientific computing
package. We also make use of the Matplotlib package for visualization of
the results. In our implementation, we adopted an object-oriented approach
where the various data structures involved in the algorithm are represented
as classes. The variables are represented by the chromosome class which
provides the necessary methods for manipulating the parameters g(p)kj and their
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mapping to the actual action variables p
(p)
j and b

(p)
ij for each member p of a

population pool for player j. The population class, deals with the pool of
action plans for each player providing the necessary tools for calculating the
utility of each action plan, carrying out the cross-over and mutation operations
and sorting the action plans in terms of fitness. The ensemble of pools is
described by the population_group class, which handles the calculation of
the utility functions at a group level (i.e. taking into account the best action
plans of the other players), the calculation of the next generation of pools
and keeping track of the overall convergence of the algorithm in terms of the
value range of utility values for each pool and provides some rudimentary
logging. The operator_game class models the access provider competition
incorporating the two demand models discussed in Section 3.

5 Results and discussion
We first discuss single area games where the provider interaction is more easily
understood and then move on to multiple area games.

5.1 Single area games

Table 1: Game parameters

Parameter Explanation Value

N1 Max. number of potential customers 10.000.000
M Number of players 2
N Number of areas 1
c1j Average connection cost (per subscriber) 0.2
α Demand coefficient 1
β Leakage coefficient 2
P Pool size per player 10
m0 Mutation factor 0.1

δumin Minimum required pool utility range 10−3

Nevals Maximum number of utility evaluations 104

We begin by examining a single area game, N = 1 with two players, M =
2, reflecting a situation where the operators decide whether or not to offer
the service at a national scale simultaneously. Table 1 summarizes the key
parameters assumed. We have chosen the maximum customer number size N1

that from a practical stand-point could make sense to invest on the entire
region directly and not on an area-by-area basis. The demand coefficient α is
equal to 1 as in Figs 2 and 3. To negate the need to transform prices between
currencies, we have adopted an arbitrary currency unit for pj which varies in
[0, 4]. Given the e−αpj dependence in (10), the range 0 ≤ pj ≤ 4 corresponds
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to service penetration ranges from 2% to 100%. For the enhanced interaction
model, we set the leakage coefficient in (23) equal to β = 2. We will investigate
the influence of this parameter later on in this section. We also assume an
average connection cost equal to c1j = 0.2 per subscriber.

Table 2: Nash equilibrium for N = 1 and the limited
interaction model

Parameter Explanation Optimal value

u1 Utility (profit) for player 1 3.01× 106

u2 Utility (profit) for player 2 3.01× 106

p1 Price set by player 1 1.20
p2 Price set by player 2 1.20
b11 Player 1 decision variable 1 (True)
b12 Player 2 decision variable 1 (True)
n1 Total subscribers for player 1 3.0× 106

n2 Total subscribers for player 2 3.0× 106

5.1.1 Limited interaction model
Table 2 summarizes the Nash equilibrium point assuming the limited inter-
action model. We readily see that the optimal action plans for each player
are identical, due to the nature of the limited interaction model. Given that
n1+n2 < N1, the market is unsaturated and each provider attracts customers
independently of the other. It is in the best interest of each provider to offer
the service (b1j = 1) at a price p1 = p2 ∼= 1.2 much higher than the connec-
tion cost (= 0.2). Figure 5a shows the obtained utilities uj corresponding to
the best action plans of each player j, with respect to the iteration number n
which is an indication of the convergence of the algorithm. The algorithm ter-
minates after 162 iterations and 3584 utility function evaluations, achieving
the required relative utility variation.

Figures 5b and 5c show the evolution of the corresponding subscriber
numbers nj and the prices pj . We see that a similar convergence behavior is
obtained, since the values of these parameters do not significantly vary after
70 iterations. Figure 5d shows a sensitivity analysis around the equilibrium
values of the prices p1 and p2 of Table 2. This is carried out by calculating the
utility functions

u′
1 = u1(p1 +∆p, b11, p2, b12) (34)

u′
2 = u2(p1, b11, p2 +∆p, b12) (35)

As shown in Figure 5d, ∆p = 0 is a maximum for both u′
1 and u′

2, implying
that neither player can do better by changing the price. Additionally, we see
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(a) (b)

(c) (d)

Fig. 5: Results of the Nash GA for the case of the limited interaction model
assuming all players have the same installation costs: a) Utilities (profits)
uj , b) number of subscribers nj , c) prices pj as a function of the algorithm
iteration n, d) sensitivity analysis around the equilibrium point.

that starting from the equilibrium point and choosing b11 = 0 would imply
that the utility for player 1 will drop to zero. The same holds for player 2
when setting b12 = 0. Thus neither provider can do better by changing their
action plans and Table 2 indeed provides a Nash equilibrium.

5.1.2 Enhanced interaction model
We next apply the algorithm to find the equilibrium for the enhanced inter-
action model. Table 3 shows the equilibrium point obtained by the algorithm.
Unlike Table 2, player 2 now has a higher utility function u2 and achieves
this by offering the service at a substantially lower price p2 which allows him
to establish a leading position in the market, attracting a much higher sub-
scriber number n2 than his competitor, player 1. On the other hand, player 1
seeks to strike a balance between lowering his rate p1 in order to attract more
customers and keeping the price high enough to ensure significant revenues.
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Table 3: Nash equilibrium for N = 1 and the enhanced
interaction model

Parameter Explanation Optimal value

u1 Utility (profit) for player 1 1.43× 106

u2 Utility (profit) for player 2 1.63× 106

p1 Price set by player 1 1.01
p2 Price set by player 2 0.77
b11 Player 1 decision variable 1 (True)
b12 Player 2 decision variable 1 (True)
n1 Total subscribers for player 1 1.76× 106

n2 Total subscribers for player 2 2.87× 106

Re-initializing at different initial random states, we confirmed that there are
two equilibrium points in which the role of player 1 and 2 are exchanged.
Under this interaction model, providers may not prefer to simply lower the
price to cope with the competition. A sensitivity analysis around the equilib-
rium point of Table 3 is carried out in Figure 6 which shows of u′

1 and u′
2 in

(34) and (35). Since ∆p = 0 is a maximum point for both utilities, we see that
neither player alone can choose a better price strategy. We notice a bump-
like behavior near ∆p = −0.24 for u′

1 and ∆p = +0.24 for u′
2. At the former

point, player 1 sets a price p1 = 0.77 = p2 and hence the providers attract the
same portion of subscribers from the customer pool. This turns out to be sub-
optimal due to the enhanced interaction assumed. Similarly, at ∆p = 0.24,
player 2 sets the same price as 1 (p2 = p1 = 1.01) and this turns out to be a
sub-optimal strategy for player 2.

Fig. 6: Price sensitivity analysis around the equilibrium point of Table 3.

Figure 7 shows the convergence properties of the algorithm for the
enhanced interaction demand model. Figure 7a shows the evolution of utilities
uj corresponding to the best action plans of each player. Figures 7b and 7c
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show the evolution of the corresponding subscriber numbers nj and the prices
pj . In this case the algorithm terminates after 179 iterations and 3598 util-
ity function calls, achieving the desired utility value range in both population
pools.

(a) (b)

(c)

Fig. 7: Results of the Nash GA for the case of the enhanced interaction model
assuming all players have the same installation costs: a) Utilities (profits)
uj , b) number of subscribers nj , c) prices pj as a function of the algorithm
iteration n.

5.1.3 Influence of customer awareness
The effect of β, describing customer leakage in the enhanced interaction case,
is shown in Figure 8. Figure 8a shows the equilibrium utility values obtained
for various values of β in the range [2, 5] while Figures 8b and 8c show the
corresponding subscriber populations and optimal price settings. In Section
3.3.2, we discussed how β can be related to consumer awareness. According
to (23), a high value for β implies that few customers will be attracted by the
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expensive provider. This pushes the players to lower their prices pj (Figure 8c),
thereby attracting higher subscriber numbers nj (Figure 8b). The provider
profits are however reduced as shown in Figure 8a.

(a) (b)

(c)

Fig. 8: Nash equilibrium obtained for different β: a) Utilities (profits) uj , b)
number of subscribers nj , c) prices pj .

5.1.4 Dissimilar providers
We next take a look at a case where installation costs for players are dis-
similar. Table 4 describes the equilibrium point obtained when the average
connection costs are c11 = 0.2 (same as before) and c12 = 0.5. Player 2 must
now compromise with a lower utility value u2 due to the reduced profit mar-
gin. Player 1’s utility remains unchanged compared to Table 2. As explained
in Section 3.3.1, under the limited interaction model, the players attract cus-
tomers independently unless the market is saturated. Table 5 outlines Nash’s
equilibrium for dissimilar providers, in the case of enhanced interaction. Since
player 2 has a reduced profit margin, player 1 now becomes dominant with a
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utility value which is higher than the utility of the dominant player in Table
3. Player 2 is forced to charge higher rates, thereby claiming smaller portion
of the customers willing to pay for the service.

Table 4: Nash equilibrium for N = 1 with dissimilar
providers under the limited interaction model

Parameter Explanation Optimal value

u1 Utility (profit) for player 1 3.01× 106

u2 Utility (profit) for player 2 2.23× 106

p1 Price set by player 1 1.20
p2 Price set by player 2 1.49
b11 Player 1 decision variable 1 (True)
b12 Player 2 decision variable 1 (True)
n1 Total subscribers for player 1 3.0× 106

n2 Total subscribers for player 2 2.2× 106

Table 5: Nash equilibrium for N = 1 with dissimilar
providers under the enhanced interaction model

Parameter Explanation Optimal value

u1 Utility (profit) for player 1 1.88× 106

u2 Utility (profit) for player 2 0.98× 106

p1 Price set by player 1 0.81
p2 Price set by player 2 1.22
b11 Player 1 decision variable 1 (True)
b12 Player 2 decision variable 1 (True)
n1 Total subscribers for player 1 3.05× 106

n2 Total subscribers for player 2 1.35× 106

5.2 Multiple area games
5.2.1 Nash equilibrium
We next discuss games where each player adjusts the variables βij of his action
plan in multiple areas (N > 1). This scenario is more interesting from a
practical point-of-view, since access providers usually take decisions on a area-
by-area basis. Such scenarios are harder to solve because of the much higher
dimension in the variable search space. We consider a ten area game (N = 10)
in which have different average customer connection cost cij which is the same
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Table 6: Multiple area game parameters

Parameter Explanation Value

Ni Area population 1.000.000
M Number of players 2
N Number of areas 10
c1j Average connection cost (per subscriber) 0.3(i− 1) + 0.2
α Demand coefficient 1
β Leakage coefficient 2
P Pool size per player 50
m0 Mutation factor 0.1

δumin Minimum required pool utility range 10−3

Nevals Maximum number of utility evaluations 106

for all providers (cij = ci). Table 6 summarizes the game parameters assumed.
Seeking an analytical solution for this problem is even more involved than in
single are games: one must consider many candidate sets of values for bij in
addition to discontinuities in the derivatives of utility functions with respect
to price.

Table 7: Nash equilibrium for N = 10 under the limited interaction
model

Parameter Explanation Optimal value

u1 Utility (profit) for player 1 0.85× 106

u2 Utility (profit) for player 2 0.85× 106

p1 Price set by player 1 2.10
p2 Price set by player 2 2.10
bi1 Player 1 decision variable 1 for i ≤ 7, 0 otherwise
bi2 Player 2 decision variable 1 for i ≤ 7, 0 otherwise
n1 Total subscribers for player 1 0.85× 106

n2 Total subscribers for player 2 0.85× 106

Due to the higher dimension of the search space, we need a larger pool size
per player P to ensure population diversity, and we have chosen P = 50 in the
simulations. The larger pool size leads to increased number of required utility
function evaluations. For cij , we have assumed a simple linear dependence on
i, cij = 0.3(i− 1) + 0.2. Table 7 shows the equilibrium obtained based on the
limited interaction model. The optimal action plans are the same for both
players similar to the single area game (Table 2). The figure suggests that
the providers prefer to invest in areas with lower installation costs cij first
(smaller i). The higher connection costs in some areas decrease the profits and
providers are better off not expanding there (bi1 = bi2 = 0 for i ≥ 8).
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Table 8: Nash equilibrium for N = 10 under the enhanced inter-
action model

Parameter Explanation Optimal value

u1 Utility (profit) for player 1 0.42× 106

u2 Utility (profit) for player 2 0.53× 106

p1 Price set by player 1 1.85
p2 Price set by player 2 1.31
bi1 Player 1 decision variable 1 for i ≤ 6, 0 otherwise
bi2 Player 2 decision variable 1 for i ≤ 4, 0 otherwise
n1 Total subscribers for player 1 0.58× 106

n2 Total subscribers for player 2 0.80× 106

Table 8 summarizes the equilibrium point for the enhanced interaction
model, where the role of the players is distinguished. Figure 9 illustrates the
customer distribution nij attracted in each area i by provider j. In the limited
interaction model, this distribution is identical for both providers but in the
case of enhanced interaction, the distributions differ. The dominant player
(player 2) is able to achieve a higher utility value by expanding in fewer areas
(b2i = 0, for i ≥ 4). The alternative provider must choose to expand in less
profitable areas (b1i = 0 for i ≥ 6) in order to make up some of the profit loss.
These are examples of how our framework can assist providers in identifying
their investment plans given each region characteristics.

(a) (b)

Fig. 9: Subscribers attracted in the 10-area game for (a) the limited and (b)
the enhanced interaction models.
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5.2.2 Convergence and sensitivity analysis
We next discuss the algorithm convergence in the multiple area scenarios. In
Figure 10, we show the optimal utilities uj for both players at each itera-
tion of the algorithm. For brevity we omit the corresponding graphs for the
subscriber number nj and the prices pj which more or less exhibit the same
behavior. Looking at the horizontal axis scale, it is evident that convergence is
slower than Figs. 5 and 7 due to the increase in search space dimension. The
search space now comprises of the two continuous variables pj plus 20 discrete
binary variables bij , instead of 2 plus 2 in the single area game. Figure 10a
corresponds to limited provider interaction model where the algorithm ter-
minates after 948 iterations (96, 796 utility function evaluations). Figure 10a
shows the results of enhanced interaction where the algorithm terminates after
1, 924 iterations (196, 348 utility function evaluations). In Figure 11 we show
the sensitivity analysis with respect to pj . We ascertain that ∆p = 0 is maxi-
mum around the estimated equilibrium point. Figure 12 shows the results of
a sensitivity analysis carried out by inverting just one decision variable of the
players (i.e. setting bij = 1 if bij = 0 and vice-versa). We readily see that for
both demand models, the change ∆uj = u′

j − uj is negative as expected in a
Nash equilibrium. The sensitivities in the limited interaction game are iden-
tical, since the solution is completely symmetric. In the enhanced interaction
model, the dominant player (player 2) has the highest sensitivity values as
expected.

(a) (b)

Fig. 10: Optimal utilities for the two players as a function of the algorithm
iteration n for the case of a) the limited and b) the enhanced interaction
models respectively.
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(a) (b)

Fig. 11: Price sensitivity analysis around the equilibrium point for the ten area
game for the case of a) the limited and b) the enhanced interaction models.

(a) (b)

Fig. 12: Decision sensitivity analysis around the equilibrium point for the
ten area game for the case of a) the limited and b) the enhanced interaction
models.

6 Conclusions and Future Work
We have illustrated how a properly modified Nash GA can be used in order to
calculate the equilibrium point in the case of access providers which compete
over the provision of a given flat-rated broadband service such as FTTH.
We considered two simple demand models. In the first, the competition is
limited and each operator attracts subscribers independently of the other,
unless the market becomes saturated. In the second model, the total number
of subscribers are determined by the provider with the lowest price and other
providers draw subscribers from it depending on the difference of their charged
price compared to the minimum price. We have shown that the algorithm can
handle cases where there are several areas in which each provider can decide
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whether he wishes to expand or not, depending on the area particularities.
Our work can be used to implement decision support tools which can help
providers to evaluate the market potential of a broadband technology and
regulatory bodies to understand the competition prospects and protect the
customer interests.

Our Python-based “solution engine” is publicly available on the web. Pos-
sible extensions would be to reduce the computation time by identifying the
right heuristics for initializing the algorithm in order to speed up the conver-
gence process, instead of using random initial states. Alternative evolutionary
approaches such as colonial competitive algorithms proposed in [45] can also
be studied to ascertain whether they can speed-up convergence. Apart from
the engine itself it would be interesting to consider alternative demand mod-
els in the presence of competition. These include Markov chains, curve-fitting,
etc. One should also adopt a more fine-grained cost model for estimating
deployment costs detailed in [46]. In FTTH, such costs depend on pre-installed
fiber routes (i.e. dark fibers), the position of the provider’s point-of-presence
(PoPs), population density, terrain type, etc [24]. One could also take into
account various inter-relations between the territories, e.g. expanding to area
B is easier when one is already present in area A. We can also consider sce-
narios where an incumbent player is already present in some areas therefore
his decision variables may be locked. We plan to address some of these issues
in future publications.
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